

QUESTION BANK (DESCRIPTIVE)

Subject with Code: CRYPTOGRAPHY & NETWORK SECURITY (23CS0525)

Regulation: R23

Course & Branch: B. Tech. - CSE & CSIT

Year & Sem. : III - II

UNIT –I
Computer and Network Security Concepts

1	a)	Explain in detail about passive attacks with neat sketch.	[L3, CO1]	5M
	b)	Explain in detail about active attacks with neat sketch.	[L3, CO1]	5M
2	a)	List and Explain various Security Services	[L2, CO2]	5M
	b)	List and Explain various Security Mechanisms	[L2, CO2]	5M
3	a)	Explain the Caesar Cipher encryption technique with a suitable example	[L2, CO1]	5M
	b)	Define Mono-alphabetic Cipher, Polygram Substitution Cipher and explain its working principle with an example.	[L2, CO1]	5M
4	a)	Solve the playfair Using the keyword “MONARCHY”, construct the 5×5 Playfair Cipher key matrix and encrypt the plaintext “INSTRUMENTS”.	[L4, CO1]	5M
	b)	Explain the process of Steganography and differentiate it from Cryptography with suitable examples.	[L2, CO3]	5M
5	a)	Solve the plaintext “come Home Tomorrow” using the Rail Fence Cipher with a depth of 3. Show the step-by-step process of encryption and the resulting ciphertext.	[L3, CO1]	5M
	b)	Explain the working principle of the Simple Columnar Transposition Technique with an example	[L2, CO3]	5M
6		Describe the working of a Traditional Block Cipher Structure with Feistel Cipher Structure a neat block diagram	[L3, CO2]	10M
7		Explain the Data Encryption Standard by including the 16-round Feistel process.	[L2, CO5]	10M
8		Describe the internal structure of the Advanced Encryption Standard (AES) algorithm by explaining the key transformations	[L2, CO1]	10M
9		Explain the role of the various transformation functions used in AES encryption	[L2, CO6]	10M
10		Explain the Hill Cipher encryption technique and demonstrate the process of converting plaintext into ciphertext using matrix multiplication modulo 26. Provide a numerical example to illustrate the encryption steps	[L3, CO6]	10M

UNIT -II
Conventional Encryption

1	a) Define Modular Arithmetic and give one simple example.	[L1,CO2]	[2M]
	b) What is the purpose of the Euclidean Algorithm in number theory?	[L1,CO2]	[2M]
	c) State Fermat's Little Theorem.	[L1,CO2]	[2M]
	d) What is the Discrete Logarithm Problem?	[L1,CO2]	[2M]
	e) Define a finite field GF(p).	[L1,CO2]	[2M]
2	a) Explain the Euclidean Algorithm with a suitable example.	[L3,CO2]	[5M]
	b) Distinguish between Euclidean Algorithm and Extended Euclidean Algorithm.	[L4,CO2]	[5M]
3	a) Describe Modular Arithmetic and its fundamental rules with examples.	[L2,CO2]	[5M]
	b) Explain the application of modular arithmetic in cryptography.	[L2,CO2]	[5M]
4	a) State and prove Fermat's Little Theorem.	[L2,CO2]	[5M]
	b) Demonstrate the use of Fermat's theorem with an example.	[L3,CO2]	[5M]
5	a) Explain Euler's Totient Function $\phi(n)$ and compute $\phi(21)$.	[L5,CO2]	[5M]
	b) State Euler's Theorem and show how it is applied using a numeric example.	[L3,CO2]	[5M]
6	a) State and explain the Chinese Remainder Theorem.	[L2,CO2]	[5M]
	b) Solve the following using CRT: $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$.	[L3,CO2]	[5M]
7	a) What is the Discrete Logarithm Problem? Explain why it is considered computationally hard.	[L2,CO2]	[5M]
	b) Discuss the importance of Diffie-Hellman with example	[L3,CO2]	[5M]
8	a) Explain the structure and properties of finite fields GF(p).	[L2,CO2]	[5M]
	b) Show how addition and multiplication are performed in GF(7) with an example.	[L3,CO2]	[5M]
9	a) Describe finite fields of the form GF(2^n).	[L2,CO2]	[5M]
	b) Demonstrate multiplication in GF(2^n) using polynomial representation.	[L3,CO2]	[5M]
10.	a) Discuss the role of number theory in cryptography.	[L2,CO2]	[5M]
	b) Compare prime fields and extension fields using examples.	[L4,CO2]	[5M]

UNIT –III
Cryptographic Hash Functions

1		Explain the role of cryptographic hash functions in information security	[L2, CO3]	10M
2	a)	What are the key properties required for a secure cryptographic hash function?	[L2, CO3]	5M
	b)	How cryptographic hash functions are applied in digital signatures and block chain systems?	[L2, CO3]	5M
3		Explain the major applications of cryptographic hash functions with suitable examples.	[L2, CO3]	10M
4	a)	Explain the working of the Secure Hash Algorithm with a neat diagram.	[L3, CO3]	5M
	b)	Describe the applications of the Secure Hash Algorithm in information security.	[L2, CO3]	5M
5	a)	Explain the working of message authentication functions with a suitable example.	[L3, CO4]	5M
	b)	Describe different techniques used to achieve message authentication.	[L2, CO4]	5M
6	a)	Explain message authentication functions.	[L2, CO4]	5M
	b)	Explain the security issues and challenges in Public-Key Infrastructure.	[L2, CO4]	5M
7		Differentiate between HMAC and CMAC with suitable examples.	[L4, CO4]	10M
8		Explain digital signatures, their working principle, and applications	[L2, CO4]	10M
9	a)	Explain the working of the NIST Digital Signature Algorithm with a neat diagram.	[L3, CO4]	5M
	b)	Discuss the security properties of the Digital Signature Algorithm (DSA).	[L2, CO4]	5M
10		Discuss X.509 certificates in detail, including their format, version, and applications.	[L2, CO4]	10M

UNIT -IV
USER AUTHENTICATION

1	a) List any two principles of remote user authentication.	[L1,CO5]	[2M]
	b) Define Kerberos? Mention its primary purpose.	[L1,CO5]	[2M]
	c) What does PGP stand for? State its key security features (any two).	[L1,CO5]	[2M]
	d) What is meant by combining Security Associations?	[L1,CO5]	[2M]
	e) Name the two phases of IKE.	[L1,CO5]	[2M]
2	Evaluate different remote authentication mechanisms (Password, Biometrics, Token-based, Multi-factor) based on security, usability, and deployment challenges.	[L3,CO5]	[10M]
3	List and explain the typical attacks remote authentication protocols must resist.	[L2,CO5]	[10M]
4	a) Illustrate how Kerberos authenticates a client to a service in a network domain.	[L3,CO5]	[5M]
	b) Analyze how Kerberos ensures security against eavesdropping and replay attacks.	[L4,CO5]	[5M]
5	a) Explain the complete architecture of PGP including key rings, packet flow, and trust model.	[L2,CO5]	[5M]
	b) Compare PGP and S/MIME on cryptographic approach, key management, trust model, and interoperability.	[L4,CO5]	[5M]
6	a) Design IPsec-based secure network architecture for enterprise communication.	[L3,CO5]	[5M]
	b) Evaluate advantages and limitations of IPsec in end-to-end security.	[L3,CO5]	[5M]
7	a) Explain IP Security Policy including SPD processing, selectors, and actions.	[L2,CO5]	[5M]
	b) Summarize the difference between ESP authentication and AH authentication.	[L4,CO5]	[5M]
8	a) Describe ESP packet format in detail and explain its security coverage.	[L2,CO5]	[5M]
	b) Evaluate the security impact of combining AH and ESP in different modes.	[L3,CO5]	[5M]
9	a) Describe why multiple SAs are needed for combining security services.	[L2,CO5]	[5M]
	b) Given a security requirement set, show how multiple SAs are combined to achieve it.	[L4,CO5]	[5M]
10.	How IKE Phase-1 and Phase-2 differ in goals, exchange methods, cryptographic operations, and outputs.	[L4,CO5]	[10M]

UNIT -V

Transport Level Security

1	a)	Explain the functions of Transport Layer Security.	[L2, CO6]	5M
	b)	List the security services provided by TLS.	[L2, CO6]	5M
2		Discuss web security requirements in detail and explain the threats addressed by each requirement.	[L2, CO6]	10M
3		Explain Transport Layer Security (TLS), its protocol components, and security services	[L2, CO6]	10M
4		Explain HTTPS and describe how it provides secure web communication	[L2, CO6]	10M
5		Explain the authentication and encryption mechanisms used in SSH.	[L2, CO6]	10M
6	a)	what is a firewall?	[L1, CO6]	2M
	b)	Describe the characteristics and functions of firewalls.	[L2, CO6]	8M
7		Explain in detail about different Types of Fire walls	[L2, CO6]	10M
8		How can firewall policies be set to allow or deny traffic?	[L2, CO6]	10M
9		What are the key parameters to consider when configuring a firewall?	[L2, CO6]	10M
10		Describe the steps to configure a firewall in a small office network.	[L2, CO6]	10M

Prepared by –

V SAMBASIVA, Assistant Professor, CSE Department

R. SUREKA, Assistant Professor, CSE Department

S. SHILPA, Assistant Professor, CSE Department

N. ANITHA, Assistant Professor, CSIT Department